2017-05-26
[public] 2.53M views, 83.5K likes, 782 dislikes audio only
To understand all pythagorean triples like (3, 4, 5), (5, 12, 13), etc. look to complex numbers.
This video was sponsored by Remix: https://www.remix.com/jobs
Help fund future projects: https://www.patreon.com/3blue1brown
An equally valuable form of support is to simply share some of the videos.
Special thanks to these supporters: http://3b1b.co/triples-thanks
Home page: https://www.3blue1brown.com/
Regarding the brief reference to Fermat's Last Theorem, what should be emphasized is that it refers to *positive* integers. You can of course have things like 0^3 + 2^3 = 2^3, or (-3)^3 + 3^3 = 0^3.
Music by Vincent Rubinetti: https://vincerubinetti.bandcamp.com/album/the-music-of-3blue1brown
Thanks to these viewers for their contributions to translations
Hebrew: Omer Tuchfeld
------------------
3blue1brown is a channel about animating math, in all senses of the word animate. And you know the drill with YouTube, if you want to stay posted about new videos, subscribe, and click the bell to receive notifications (if you're into that).
If you are new to this channel and want to see more, a good place to start is this playlist: http://3b1b.co/recommended
Various social media stuffs:
Website: https://www.3blue1brown.com
Twitter: https://twitter.com/3Blue1Brown
Patreon: https://patreon.com/3blue1brown
Facebook: https://www.facebook.com/3blue1brown
Reddit: https://www.reddit.com/r/3Blue1Brown